Analytical Review of Spiro‐OMeTAD Hole Transport Materials: Paths Toward Stable and Efficient Perovskite Solar Cells

نویسندگان

چکیده

The hole transport material (HTM) of organic–inorganic perovskite solar cells (PVSCs) plays a very important role for achieving high power conversion efficiency and long-term stability. 2,2’,7,7’-tetrakis[N,N-di(4-methoxyphenyl)amino]-9-9’-spirobifluorene (spiro-OMeTAD) is the first solid-state HTM used in PVSCs has gained tremendous attention during last decade. Herein, concept spirolinkage synthesis spiro-based HTMs discussed, followed by an overview desirable optical electrical properties spiro-OMeTAD. Recent progress improvements analyzed systematically, impacts interface engineering, dopant-free spiro-OMeTAD, novel are reviewed detail. mobility spiro-OMeTAD depends on types dopants doping concentration. Commonly lithium bis(trifluoromethylsulfonyl)imide 4-tert-butylpyridine additives reduce PVSC stability due to hygroscopicity corrosiveness, respectively. effects device techniques improve also discussed. review analysis various methods strategies presented useful research community, providing guidance directions toward further development with improved

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hole-Transport Materials for Perovskite Solar Cells.

The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this lev...

متن کامل

Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells.

Novel star-shaped hole transporting materials (HTMs) with a bis-dimethylfluorenylamino moiety have been synthesized and evaluated for high performance perovskite solar cell applications. Maximum power conversion efficiency of 14.21% has been achieved by using the HTM with a fused TPA core and the long-term stability was also shown to be comparable with that of .

متن کامل

Hole-transport materials with greatly-differing redox potentials give efficient TiO2-[CH3NH3][PbX3] perovskite solar cells.

Two diacetylide-triphenylamine hole-transport materials (HTM) with varying redox potential have been applied in planar junction TiO2-[CH3NH3]PbI3-xClx solar cells leading to high power-conversion efficiencies up to 8.8%. More positive oxidation potential of the HTM gives higher VOC and lower JSC illustrating the role of matching energy levels, however both HTMs gave efficient cells despite a di...

متن کامل

Hole-Transporting Materials for Printable Perovskite Solar Cells

Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2',7,7'-tetrakis-(N,N'-di-p-methoxyphenylamine)-9,9'-spirobi...

متن کامل

Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer.

UNLABELLED A solution processed MoO3/PEDOT:PSS bilayer structure is used as the hole transporting layer to improve the efficiency and stability of planar heterojunction perovskite solar cells. Increased hole extraction efficiency and restrained erosion of ITO by PEDOT PSS are demonstrated in the optimized device due to the incorporation of an MoO3 layer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced energy and sustainability research

سال: 2022

ISSN: ['2699-9412']

DOI: https://doi.org/10.1002/aesr.202200045